

Inhibition of vascular calcification

Role of matrix Gla protein

Yan-Ping Liu, Fang-Fei Wei, Cees Vermeer, and Jan A. Staessen, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, jan.staessen@med.kuleuven.be / ja.staessen@maastrichtuniversity.nl

Outline of presentation

What is MGP?

MGP

- Macrovascular complications in relation to MGP:
 - total, CV, and non-CV mortality;
 - fatal plus non-fatal CV events, CHD, stroke;
- Microvascular complications in relation to MGP:
 - eGFR;
 - micro-albuminuria;
- Implications for public health and prevention.

What is MGP?

Biomarker of vitamin K status and arterial calcification

MGP The major calcification inhibitors

Fetuin A:

Small Gla proteins:
Matrix Gla protein (MGP);
Osteocalcin;
Gla-rich protein (GRP).

Characteristics of fetuin-A

Large protein (59 kD);

MGP

- Synthesized in the liver;
- Systemic calcification inhibitor;
- Too large to penetrate into vascular elastin and collagen fibrils;

MGP Characteristics of MGP

- Small protein (10 kD);
- Synthesized by VSMCs;
- Local calcification inhibitor;
- Penetrates into vascular elastin and collagen fibrils.

MGP Post-translational modifications of MGP

Adverse health outcomes

Focus on the macrocirculation

- Calcification of the conduit arteries is a hallmark of CV disease;
- Matrix Gla-protein (MGP) is produced by VSMC and is the most powerful inhibitor of vascular calcification presently known;
- In case-control studies of patients with CKD or DM, or in terminally ill patients, MGP is associated with CV complications.

MGP Sex- and age-standardised mortality rates by thirds of dp-ucMGP

HRs express the risk associated with a doubling of dp–ucMGP, account for family clusters, and were adjusted for sex, age, BMI, SBP, HR, CSMK, drinking, TCHOL, AHT, DM, and CVD.

Hypertension 2014 Nov 24. pii: HYPERTENSIONAHA.114.04494

MGP10-year absolute risk of total
and non-cancer mortality

Risk functions were standardised for sex, age, BMI, SBP, HR, CSMK, drinking, TCHOL, AHT, DM, and CVD.

MGP Sex and age standardised rates by thirds of the dp-ucMGP distribution

HRs of mortality associated with increasing level of dp-ucMGP

MGP

HRs express the risk at each level of dp-ucMGP compared with the average risk in the whole population. They were calculated for 0.01- μg/l increments in dp-ucMGP ranging from 1.43 up to 14.0 μg/l (99th percentile). HRs were adjusted for sex, age, BMI, SBP, HR, CSMK, drinking, TCHOL, AHT, DM, and CVD.

Coverage of MGP

MGP

Four SNPs in high LD (r²>0.80) with 223 tagged SNPs;

Covering the entire gene with extension to the 3' and 5' flanking regions.

MGP dp-ucMGP by MGP genotype

Geometric means of dp-ucMGP adjusted for age, BMI, CSMK and drinking.

Log dp–ucMGP was regressed on age ($r^2=7.0$), BMI (0.8), smoking (2.7) and drinking (0.24) and the genetic variants of *MGP* (≥ 0.7).

MGPHRs associated with
the predicted dp-ucMGP

Mortality	Predicted dp-ucMGP	rs2098435	rs4236	rs2430692
	linear	0.89	0.87	0.89
Total (194)	squared	1.05*	1.04	1.03
	р	0.13	0.13	0.23
lon-cancer	linear	0.82	0.79*	0.81*
136)	squared	1.09**	1.09**	1.07*
	р	0.007	0.004	0.010

MGP HRs associated with the predicted dp-ucMGP

	dp-ucMGP	152090455	rs4236	rs2430692
CV death (67)	linear	0.95	0.91	0.89
Coronary events (85)	linear	0.75*	0.87	0.85

In a general population, dp-ucMGP predicts total, non-cancer and CV mortality, but lower coronary risk;

- The associations of dp-ucMGP with non-cancer mortality is probably causal. The same conclusion might also be applicable to coronary events;
- dp-ucMGP reflects vitamin K status. Our findings suggests that from 12% to 37% of people are vitamin K deficient.

Adverse health outcomes

Related to the microcirculation

MGP t-ucMGP as marker of arterial calcification

- t-ucMGP (ucMGP) predominantly consists of phosphorylated MGP and is not a biomarker of vitamin K status, but reflects the extent of arterial calcification.
- Up-regulation of MGP transcription in response to vascular stress influences circulating t-ucMGP levels.
- In CKD patients, t-ucMGP levels are lower than in healthy age-matched controls (193 vs. 441 nM) and correlated inversely with CAC scores determined by multi-slice computed tomography (r= 0.41; p=0.009).

MGP **MGP in skin capillary**

Calcium (von Kossa) ucMGP (inactive)

cMGP (active)

MGP Research objective

- Previous research on the role of MGP in CV disease focused on macrovascular complications.
- In skin biopsies pericapillary microcalcifications co-localised with MGP. We hypothesised that MGP might be involved in adverse health effects related to the microcirculation.
- We tested the hypothesis that renal microcirculatory phenotypes, as exemplified by eGFR and microalbuminuria might be related to circulating MGP.

MGP Continuous traits by thirds of the dp-ucMGP distribution

Characteristic	Low (n=390)	Medium (n=392)	High (n=392)	р
MGP, µg/L	<3.02	3.02 to 4.75	≥4.75	<0.001
Age, y	34.0	36.8	43.6	<0.001
BMI, kg/m²	24.4	25.1	26.8	<0.001
SBP/DBP, mmHg	122.5/77.3	126.1/78.5	129.1/79.5	≤0.008
Heart rate, bpm	65.8	65.8	67.0	0.12
Cholesterol, mmol/L	5.00	5.05	5.36	<0.001
Glucose, mmol/L	4.89	5.05	5.11	0.03
p for trend.				

Categorical traits by thirds of the dp-ucMGP distribution

Characteristic	Low (n=390)	Medium (n=392)	High (n=392)	р
Women, %	49.2	49.7	55.1	0.19
Smoker, %	27.2	24.7	13.8	<0.001
Drinker, %	67.7	60.0	57.1	0.007
CV history, %	1.5	2.8	4.6	0.04
Diabetes, %	2.8	6.1	4.6	0.08
Microalbuminuria, %	5.6	3.3	5.6	0.15
HT (treated), %	18.5 (37.5)	28.3 (49.5)	39.5 (55.5)	<0.001
p for trend.				

MGP

Renal function by thirds of the dp-ucMGP distribution

Characteristic	Low (n=390)	Medium (n=392)	High (n=392)	p
eGFR, mL/min/1.73 m ²	92.9	90.9	85.0	<0.001
24-h microalbuminuria, mg	12.0	12.1	14.6	0.45
Stage of CKD, %				
1	52.1	50.5	37.8	<0.001
2	46.9	45.2	52.3	<0.001
3	1.0	4.3	10.0	<0.001

p for trend.

MGP

	eGF	eGFR		Log ACR		
	Estimate	р	Estimate	р		
Log dp-ucMGP						
Adjusted	-1.57	0.02	0.021	0.12		
Fully adjusted	-1.54	0.02	0.021	0.12		
Log t-ucMGP						
Adjusted	1.89	0.04	0.004	0.85		
Fully adjusted	1.83	0.048	0.004	0.84		

All models account for MAP, PR, BSUG, total-to-HDL cholesterol ratio, γ -GT, SMK, and AHT (DIU, β b, RAS inhibitors, vasodilators); ACR additionally adjusted for sex, age, and BMI. Fully adjusted models included both dp-ucMGP and t-ucMGP.

Multivariable-adjusted odds ratios

	CKD	СКД		Microalbuminuria		
	Estimate	р	E	Estimate	р	
Log dp-ucMGP						
Adjusted	1.19	0.02		1.43	0.07	
Fully adjusted	1.18	0.02		1.43	0.07	
Log t-ucMGP						
Adjusted	0.90	0.32		0.73	0.18	
Fully adjusted	0.91	0.35		0.74	0.20	

CKD is an eGFR <60 mL/min/1.73 m². Microalbuminuria was ACR \geq 3.5 mg/mmol in women or \geq 2.5 mg/mmol in men. Odds ratio express the risk associated with a doubling of dp-ucMGP or t-ucMGP. All models accounted for covariables and confounders as in the previous slide.

MGP Conclusions

In the general population, eGFR is inversely correlated with dp-ucMGP, a marker of a vitamin K deficiency, whereas the opposite is the case for t-ucMGP, a marker of prevalent arterial calcification.

MGP Perspectives

- MGP, a marker of vitamin K status, is associated with adverse health outcomes, including endpoints driven by macro- and micro-circulatory events.
- From 20% to 40% of Flemish have suboptimal vitamin K status. Nothing is known about other populations!
- Current optimal daily allowances for vitamin K address clothing, but not vascular health.
- Time for revision?