# The Pulse of Asia 2009 Dynamic Arterial Stiffness During Exercise

Jong-Won Ha, MD, PhD. Yonsei Univ College of Medicine

교육과학기술부 지정 심혈관 노화제어연구사업단



Why we need to assess arterial stiffness during exercise ?





# Hypothesis #1

Arterial stiffness assessed during exercise would be more predictive for exercise capacity than that at rest



# Study subjects

123 consecutive subjects (43 males, age; 58 ± 11, HTN 69.1 %) Diastolic stress echocardiography Radial artery tonometry Simultaneously

(From Nov. 2007 to Sep. 2008)



# Study subjects

Exclusion criteria Valvular heart disease **Peripheral vascular disease** History of significant CAD or inducible ischemia Atrial fibrillation or significant arrhythmia Severe hypertension (> 180/ 110 mmHg) Renal insufficiency (Cr > 1.4 mg/dL)



Diastolic stress echo
 Symptom-limited multistage exercise test
 with a variable load bicycle ergometer
 (Medical Positioning Inc, Kansas City, Mo, USA)

Incremental workload of 25 W every 3 minutes Peripheral SBP, DBP, HR : at each stage



 Assessment of central blood pressure and arterial transfer function



1. At rest

2. Immediately (< 1 min) after peak exercise(Supine position)

\*\* Pulse wave velocity at rest

Radial artery tonometry (SphygmoCor®, AtCor Medical)





Central Systolic BP
Central Diastolic BP
Central PP (pulse pressure)
Augmentation index

Augmentation index = ( $\triangle$  P/PP) x 100



## **Demographic characteristics**

n - 122

|                                    | $\Pi = \Pi Z J$ |
|------------------------------------|-----------------|
| Age, years                         | 58 ± 11         |
| Male gender, n (%)                 | 43 (35.0)       |
| HTN, n (%)                         | 85 (69.1)       |
| DM, n (%)                          | 13 (10.6)       |
| Smoking, n (%)                     | 35 (28.5)       |
| Dyslipidemia, n (%)                | 52 (42.3)       |
| Body mass index, kg/m <sup>2</sup> | 25.5 ± 3.0      |
| Exercise duration, sec             | 560.6 ± 188.7   |

Shim CY et al. Eur Heart Failure meeting 2009



# Simple correlation Age, PWV and Exercise duration



Shim CY et al. Eur Heart Failure meeting 2009



### Simple correlation

### **Alx and Exercise duration**



Shim CY et al. Eur Heart Failure meeting 2009



### **Simple correlation**

Change of Alx during exercise & Exercise duration



# Multiple regression analysis Resting Alx vs. Exercise duration

|               | β      | t      | P-value |
|---------------|--------|--------|---------|
| Age           | -0.399 | -5.215 | < 0.001 |
| Male gender   | 0.613  | 7.512  | < 0.001 |
| LV mass index | 0.149  | 2.149  | 0.034   |
| PWV           | 0.106  | 1.387  | 0.169   |
| Resting Alx   | -0.023 | -0.268 | 0.789   |



# Multiple regression analysis Alx after peak Ex vs. Exercise duration

|                     | β      | t             | P-value |
|---------------------|--------|---------------|---------|
| Age                 | -0.337 | -4.397        | < 0.001 |
| Male gender         | 0.578  | 7.295         | < 0.001 |
| LV mass index       | 0.175  | 2.604         | 0.011   |
| PWV                 | 0.082  | 1.111         | 0.270   |
| Resting Alx         | 0.123  | 1.290         | 0.201   |
| Alx after peak Ex ( | -0.264 | <b>-2.834</b> | 0.006   |

## **Multiple regression analysis**

### △ Alx (Peak Ex- Resting) vs. Exercise duration

|                         | β      | t      | P-value  |
|-------------------------|--------|--------|----------|
| Age                     | -0.337 | -4.397 | < 0.001  |
| Male gender             | 0.578  | 7.295  | < 0.001  |
| LV mass index           | 0.175  | 2.604  | 0.011    |
| PWV                     | 0.082  | 1.111  | 0.270    |
| Resting Alx             | -0.084 | -1.006 | 0.318    |
| △ Alx (peak Ex-Resting) | -0.198 | -2.834 | 0.006    |
|                         |        |        | A BORTON |

# Implications Unlike Alx and PWV measured at rest, Alx immediately after peak exercise and change of Alx from rest to exercise were independent predictors of exercise capacity



# Limitations



 At rest
 Immediately (< 1 min) after peak exercise
 Not technically feasible during

exercise



Diastolic Stress Echocardiography: A Novel Noninvasive Diagnostic Test for Diastolic Dysfunction Using Supine Bicycle Exercise Doppler Echocardiography

Jong-Won Ha, MD, PhD, Jae K. Oh, MD, Patricia A. Pellikka, MD, Steve R. Ommen, MD, Vicky L. Stussy, RN, RDCS, Kent R. Bailey, PhD, James B. Seward, MD, and A. Jamil Tajik, MD, *Rochester, Minnesota* 

evere exertional symptoms, it o measure the hemodynamic to ensure that these symptoms tory dysfunction.

#### olic Stress

olic dysfunction, the abnormal augmentation of relaxation as luting exercise.<sup>11-13</sup> Therefore, olic functional reserve (defined he ventricle to accommodate sary for increased cardiac de-

#### Advantage of the Current Diastolic Stress Echocardiography Protocol

Supine bicycle exercise echocardiography allows continuous imaging of the heart during exercise and acquisition of the LV filling pattern in the immediate recovery phase, which may be helpful in interpreting changes in diastolic function. An increase in end-systolic and end-diastolic ventricular volumes occurs in the supine position at rest and during exercise.<sup>17,18</sup> Therefore, myocardial wall tension (directly related to volume and pressure) increases precipitously with supine exercise, increasing myo-



## Two different TR signals



# Simplified Bernoulli Equation



CP971277-7

## **Two different TR signals**





Elevated RAP or decreased RA compliance



## **Two different LVOT signals**





Non-compliant or stiff aorta

# 20 year-old man









### **M/ 20**

### At Rest

SBP/ DBP 103/ 75 mmHg PP 28 mmHg HR = 58 bpm Aortic Alx 18 % Aortic Alx (HR 75) 10 %

Peak Exercise (100 W)

SBP/ DBP 115/ 71 mmHg PP 44 mmHg HR = 94 bpm Aortic Alx -1 % Aortic Alx (HR 75) 8 %







### **M/74**

### At Rest

SBP/ DBP 130/ 77 mmHg PP 53 mmHg HR = 51 bpm Aortic Alx 45 % Aortic Alx (HR 75) 33 %

Peak Exercise (50 W)

SBP/ DBP 200/ 127 mmHg PP 73 mmHg HR = 57 bpm Aortic Alx 37 % Aortic Alx (HR 75) 28 %





심장멸관병원

# Hypothesis #2 LVOT flow deceleration would be correlated with central PP and parameters of arterial stiffness



## Methods

Subjects

175 subjects (65 males, 57 ± 11 Yo, HTN 65.7 %) 2D and Doppler echo Radial artery tonometry



## **Exclusion criteria**

Valvular heart disease **Peripheral vascular disease** Symptomatic cerebrovascular disease History of significant CAD or inducible ischemia Significant systemic disease Atrial fibrillation or significant arrhythmia Severe hypertension (> 180/ 110 mmHg) Renal insufficiency (Cr > 1.4 mg/dL)



## The Parameters of LVOT Doppler



| <ol> <li>LVOT Ejection time</li> </ol> |                |
|----------------------------------------|----------------|
| ② LVOT Acceleration time (Time to      | peak velocity) |
| ③ LVOT Deceleration time               |                |
| ④ Peak aortic flow velocity            |                |
| Acceleration time/ Ejection time       | = ② / ①        |
| Deceleration time/ Ejection time       | = ③ / ①        |
| Deceleration time/ Acceleration time   | = 3/2          |

### Shim CY et al. ASE 2008



### Assessment of central blood pressure and arterial transfer function



Simultaneously with 2D and Doppler echo (Supine position)

Radial artery tonometry (SphygmoCor®, AtCor Medical)





Central Systolic BP
Central Diastolic BP
Central PP (pulse pressure)
Augmentation pressure (△P)
Augmentation index

Augmentation index = ( $\triangle$  P/PP) x 100



### **Demographic characteristics**

N= 175 **57** ± **12** Age, years Male gender, n (%) 65 (37.1) Height, cm **162 ± 9** Weight, Kg **66** ± **10** Body mass index, kg/m<sup>2</sup> 25.2 ± 3.1 115 (65.7) HTN, n (%) 13 (7.4) **Diabetes mellitus, n (%)** Dyslipidemia, n (%) 73 (41.7) Smoking, n (%) 48 (27.4)

## **LVOT Doppler pattern**

#### (A) Compliant aorta



### (B) Stiff aorta



### 303 msec 74 mmHg

용 심장혈관병원

### **LVOT deceleration time and PP**



**Peripheral PP (mmHg)** 

### **Central PP (mmHg)**



## **Simple correlation**

### **Deceleration time**

심장혈관병원

0

|                 |       | p-value* |
|-----------------|-------|----------|
| Age             | 0.37  | <0.001   |
| Female gender   | 0.29  | <0.001   |
| Height          | -0.35 | <0.001   |
| LVEF            | 0.19  | 0.018    |
| LV mass index   | 0.01  | 0.911    |
| LA volume index | 0.33  | <0.001   |
| LVOT diameter   | -0.16 | 0.034    |

| Dece             |                                       | leration time                            |  |
|------------------|---------------------------------------|------------------------------------------|--|
| Peripheral       | ····································· |                                          |  |
| SBP              | 0.11                                  | 0.160                                    |  |
| DBP              | -0.14                                 | 0.076                                    |  |
| PP               | 0.26                                  | 0.001                                    |  |
| Heart rate       | -0.52                                 | <0.001                                   |  |
| Central          |                                       |                                          |  |
| SBP              | 0.22                                  | 0.004                                    |  |
| DBP              | -0.15                                 | 0.047                                    |  |
| PP               | 0.45                                  | <0.001                                   |  |
| AP               | 0.49                                  | <0.001                                   |  |
| PP amplification | -0.37                                 | <0.001                                   |  |
| Alx              | 0.42                                  | <0.001                                   |  |
| Alx@75           | 0.25                                  | () () () () () () () () () () () () () ( |  |

## **Multiple regression analysis**

| 的推进人间的正常生活          | β                            | 的。他们  | p-value* |
|---------------------|------------------------------|-------|----------|
| LVOT deceleration t | ime (R <sup>2</sup> = 0.456) |       |          |
| Age                 | 0.11                         | 1.47  | 0.144    |
| Female gender       | 0.06                         | 0.58  | 0.564    |
| Height              | -0.11                        | -0.90 | 0.369    |
| LVEF                | 0.08                         | 1.32  | 0.189    |
| LA volume index     | 0.07                         | 1.11  | 0.267    |
| LVOT diameter       | 0.07                         | 0.98  | 0.327    |
| Peripheral DBP      | -0.07                        | -1.18 | 0.240    |
| Heart rate          | -0.39                        | -6.18 | <0.001   |
| Central PP          | 0.29                         | 4.35  | <0.001   |
|                     |                              |       | 🛞 심장혈관병원 |

# Implications

DT of the LVOT flow velocity is a surrogate Doppler echocardiographic parameter for central PP Prolonged LVOT DT would be a useful parameter to detect reduced compliance of a central artery



# Limitations



 At rest
 Immediately (< 1 min) after peak exercise
 Not technically feasible during

exercise



Deceleration time of the left ventricular outflow tract flow velocity reflects central arterial stiffness <u>during exercise</u>

160 subjects (64 males, 57 ± 11 Yo) Diastolic stress echocardiogram with supine bicycle ergometry Radial artery tonometry



### **LVOT DT & Pressure augmentation**



Pressure augmentation at rest (mmHg)

Pressure augmentation at peak exercise (mmH



## **LVOT DT & Augmentation index**



## Implications

 DT of the LVOT flow velocity is a surrogate Doppler echocardiographic parameter reflecting central arterial stiffness not only at rest but also during exercise

 With a Doppler assessment of LVOT flow, central arterial stiffness and its dynamic changes with exercise can be assessed



# Conclusion

 Assessment of arterial stiffness during exercise is important
 LVOT Doppler pattern may provide dynamic arterial stiffness during exercise





### Yonsei Cardiovascular Hospital

Yonsei University College of Medicine